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Abstract— Linear-array-based photoacoustic tomogra-
phy has shown broad applications in biomedical research
and preclinical imaging. However, the elevational resolution
of a linear array is fundamentally limited due to the weak
cylindrical focus of the transducer element. While several
methods have been proposed to address this issue, they
have all handled the problem in a less time-efficient way.
In this work, we propose to improve the elevational resolu-
tion of a linear array through Deep-E, a fully dense neural
network based on U-net. Deep-E exhibits high computa-
tional efficiency by converting the three-dimensional prob-
lem into a two-dimension problem: it focused on training a
model to enhance the resolution along elevational direction
by only using the 2D slices in the axial and elevational plane
and thereby reducing the computational burden in simula-
tion and training. We demonstrated the efficacy of Deep-E
using various datasets, including simulation, phantom, and
human subject results. We found that Deep-E could improve

Manuscript received October 27, 2021; revised December 7, 2021;
accepted December 15, 2021. Date of publication December 20, 2021;
date of current version May 2, 2022. This work was supported in part by
the Susan G. Komen Foundation under Grant CCR17481211 and in part
by the National Institute of Health under Grant R01EB029596 and Grant
R01EB028978. (Corresponding author: Jun Xia.)

This work involved human subjects or animals in its research.
Approval of all ethical and experimental procedures and protocols was
granted by the Institution Review Board of University at Buffalo.

Huijuan Zhang, Chuqin Huang, Nikhila Nyayapathi, Emily Zheng, and
Jun Xia are with the Department of Biomedical Engineering, University
at Buffalo, State University of New York, Buffalo, NY 14260 USA (e-mail:
huijuanz@buffalo.edu; chuqinhu@buffalo.edu; nikhilan@buffalo.edu;
emilyzhe@buffalo.edu; junxia@buffalo.edu).

Wei Bo and Wenyao Xu are with the Department of Computer
Science and Engineering, University at Buffalo, State University
of New York, Buffalo, NY 14260 USA (e-mail: weibo@buffalo.edu;
wenyaoxu@buffalo.edu).

Depeng Wang was with the Department of Biomedical Engineering,
University at Buffalo, State University of New York, Buffalo,
NY 14260 USA. He is now with the Department of Biomedical
Engineering, Duke University, Durham, NC 27708 USA (e-mail:
depeng.wang@duke.edu).

Anthony DiSpirito III, Tri Vu, Yiyang Gong, and Junjie Yao are with
the Department of Biomedical Engineering, Duke University, Durham,
NC 27708 USA (e-mail: anthony.dispirito@duke.edu; tri.vu@duke.edu;
yiyang.gong@duke.edu; junjie.yao@duke.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TMI.2021.3137060, provided by the authors.

Digital Object Identifier 10.1109/TMI.2021.3137060

elevational resolution by at least four times and recover the
object’s true size. We envision that Deep-E will have a sig-
nificant impact in linear-array-basedphotoacoustic imaging
studies by providing high-speed and high-resolution image
enhancement.

Index Terms— Breast imaging, convolutional neural net-
work, deep learning, elevation resolution, linear transducer
array, photoacoustic tomography, resolution enhancement.

I. INTRODUCTION

PHOTOACOUSTIC (PA) computed tomography (PACT) is
a hybrid biomedical imaging modality that combines the

merits of high optical absorption contrast and high acoustic
resolution [1]. In PACT, a short-pulsed laser provides excita-
tion light absorbed by biomolecules such as hemoglobin, lipid,
or melanin, which causes thermoelastic expansion and gener-
ates acoustic waves that propagate through the tissue. Ultra-
sound transducer arrays detect these acoustic waves and form
an image of the optical absorber distribution. As a noninvasive
imaging technique with deep penetration (>3cm), PACT is
sensitive to endogenous contrasts, particularly hemoglobin,
which plays an essential role in the functioning of biological
tissue [2], [3]. Over the past few years, PACT has been
demonstrated in various preclinical and clinical applications,
including human breast scanning [4]–[6], functional imag-
ing [7], cardiology imaging [8], biometrics [9], and small
animal whole-body imaging [10]. Among different types of
transducers, linear transducer arrays are widely used due to
their handheld convenience. The piezoelectric elements of the
linear transducer arrays are arranged in a line to form a
planar field of view. Linear arrays have low manufacturing
costs and can be conveniently integrated with light sources
for photoacoustic imaging [11].

An intrinsic limitation for the linear array is the poor three-
dimensional (3D) imaging performance. As shown in Fig. 1(a),
the 3D resolution of a linear-array is defined along with lateral,
axial, and elevational directions. The element pitch determines
the lateral resolution, which typically equals one acoustic
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Fig. 1. A schematic of the linear transducer array and experimental
setup. (a). Geometry configuration of the linear transducer array. The
X-axis represents the direction of imaging depth. The acoustic focus of
the transducer is at a 40 mm axial depth. The Y-axis represents the
lateral direction, which is along the width of the transducer. The Z-axis
represents the elevational direction that is along with the height of the
transducer array. (b). Schematic of the experimental PACT imaging setup.
The fiber output and linear ultrasound transducer array are immersed in
the water tank for light illumination and signal detection, respectively.
3D imaging is achieved through a motorized translation stage. The laser
synchronously triggers the motor for scanning and the DAQ for sampling.

wavelength at the central frequency. The axial direction is
perpendicular to the transducer element, and its resolution
typically equals half the acoustic wavelength at the central
frequency. The elevational direction is perpendicular to the
lateral and axial plane, and a linear array can be scanned along
this direction to form a 3D image. However, the elevational
resolution is lower due to the large transducer element height
and its fixed cylindrical focus. In conventional 3D image
formation, each 2D frame is reconstructed separately, and then
these frames are stacked to form a 3D image [12]. Because
each 2D reconstruction assumes that all photoacoustic signals
come from the same imaging plane, the out-of-plane signals
degrade the elevational resolution [13].

Various methods, either hardware or software-based, have
been developed to improve the elevational resolution in a
linear array-based PACT [11]. Before introducing our method,
we will provide a brief overview of these approaches.
Hardware-based approaches require modification on the imag-
ing geometry or detection scheme. For instance, Gateau et al.
proposed a scanning geometry that combined translational and
rotational scanning to improve the elevational resolution [14].
Schwarz et al. investigated a bi-directional scanning geometry
such that two linear scans were conducted perpendicular to
each other to increase the elevational resolution [15]. These
complicated methods increased the scanning time and gen-
erated more than twice the data for image reconstruction.
Wang et al. proposed a detection hardware design based on
acoustic diffraction through a thin slit that essentially increased
the elevational receiving angle [16]. While this method showed
noticeable improvement in elevational resolution, the slit

reduced the acquired signal amplitude at each scanning posi-
tion (though it could be recovered through 3D reconstruction).
Software-based approaches use advanced image reconstruc-
tion algorithms to account for out-of-plane signals. Here
the “plane” refers to the lateral-axial plane. We previously
introduced a 3D focal line (3DFL) and a coherent weighted
focal line method for 3D image reconstruction [13]. 3DFL
reconstruction algorithm improves the elevational resolution
by calculating the time of flight in 3D space. At the same time,
coherent weighting assigns a weighting factor into the 3DFL
reconstructed image to further improve the image contrast
and resolution. However, this reconstruction algorithm requires
back projection of raw data in 3D, which is time-consuming.
Moreover, it is unclear whether the coherent weighting factor
preserves the quantitative information of the PA signals.

In recent years, deep learning has been developing rapidly
for photoacoustic imaging applications [17]–[21]. Various
deep learning networks have been proposed to improve the
photoacoustic image quality, degraded due to undersampling,
limited-view, or limited bandwidth problems. Depending on
the training model, these networks work on either the recon-
structed image or raw channel data [22]–[25]. Applications
in image segmentation and classification can also be found
in PACT [26], [27]. These studies have proved that deep
learning techniques are promising to improve photoacoustic
imaging quality. To date, most studies focused on improving
the lateral resolution, and very few studies reported the use
of deep learning to improve the spatial resolution of 3D
PACT [28], [29]. In particular, improving the elevational
resolution of a linear array and validating the algorithm for
human data remains unexplored.

Here, we propose a deep learning-based method to improve
the elevational resolution in PACT. In this study, we provide
an efficient simulation approach to generate low elevational
resolution training data. Since the lateral and axial resolutions
are more than twice the elevational direction, we convert the
3D problem into 2D (axial-elevational) and focus the training
along the elevational direction. This simplification makes
the simulation and training computationally more efficient.
Our deep learning model, implemented based on a Fully-
dense U-net (FD U-net), is named Deep-E. After validating
with simulation, phantom, and human experimental results,
we demonstrate that Deep-E provides at least four times
improvement in elevational resolution, which is a significant
enhancement. Most importantly, instead of simply shrinking
the object to a point source, we also verify that Deep-E can
recover the object’s true size.

II. METHODS

A. Network Architecture

In deep learning, we assume an approximate nonlinear rela-
tionship between the low-elevational resolution PACT image,
X , and high-elevational resolution PACT image, Y , which can
be represented in the form of a function F as shown in (1).
In this function, θ are the parameters that learn to map X and
Y during training. Mean square error (MSE) is used as the
model loss function in (2), such that the loss error between the
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network predicted output, Ypred , and the corresponding ground
truth, Ytrue, is minimized via supervised learning. Both MSE
and mean absolute error (MAE) were somewhat comparable
in terms of final network performance, though MSE seemed to
have a smoother training process. As such, MSE was chosen
over MAE as the model loss function.

Y = F(X, θ) (1)

L M S E = 1

N

∑N

i=1

∥∥∥Y i
true − Y i

pred

∥∥∥
2

(2)

U-net is a widely used convolutional neural network in bio-
medical imaging [30]–[32]. It has encoder-decoder paths with
a skip connection in each layer to extract the effective features
from the training dataset without losing essential features dur-
ing the downsampling procedure. The encoder-decoder paths
of the U-net have been proven to perform satisfactorily in the
segmentation of biomedical images [32]. It has the advantages
of computational efficiency and the ability for training with
a small dataset. An upgraded U-net, called FD U-net, was
chosen as the basis for our model because it has been shown
in previous works to yield better image quality outputs than
U-net [33], [34]. FD U-net incorporates dense connectivity
in both the encoder and decoder paths of the U-net. In each
layer, a Dense block is implemented. In these Dense blocks,
the block input and each convolutional layer are connected
to all subsequent layers through channel-wise concatenation.
Thus, the concatenated result of previous convolutional layers
in the dense block and the dense block input serves as the
input to each subsequent convolutional layer in the dense block
convolution chain (right of Fig.2). This architecture, therefore,
helps retain all the features learned by previous layers and
builds upon the knowledge more explicitly than in normal
convolutional blocks. Moreover, dense connectivity in layers
allows the neural network to be deeper. It introduces more
connections to efficiently propagate the gradient information
without a vanishing problem, making the network relatively
easier to train. With these many benefits over regular U-net in
mind, we chose an FD U-net as the most capable architecture
to train our data.

The FD U-net architecture used in this study is shown in
Fig. 2. It has six layers. The input matrix size is 256 × 256.
The first layer contains a 3 × 3 Convolution block that brings
the input image depth of 1 to a depth of 16 channels. Then the
first Dense block doubles the number of channels from 16 to
32 convolutional filters using a kernel size 3 × 3. After that,
each Dense block is followed by a Down block, which consists
of a 1 × 1 Convolution block with a stride of 1 and a 3 × 3
Convolution block with a stride of 2 (which halves the image
size). This pattern of Dense block followed by a Down block
gradually increases the number of filters to the maximum of
512 and reduces the image size to 8 × 8 at the bottleneck layer
(last layer of the downsampling path). Each Convolution block
consists of a convolutional layer with the specified kernel size,
followed by a ReLU activation function, which is then fol-
lowed by a batch normalization layer. Although some similar
networks have found benefit in switching from ReLU to ELU
or other activation functions, we have not in our experience
found much difference in overall model performance when

changing the activation function. Therefore, we have decided
to retain the deep learning community standard of ReLU as
the activation function. The second half of the network follows
a similar repeated pattern of Up block, followed by shortcut
concatenation with filters from earlier in the network (doubling
the channel depth), followed by a 1 × 1 Convolution block
with the stride of 1 (which reduces the channel depth by a
factor of 4) and a 3 × 3 Dense block (which doubles the
channel depth again). The Up block is similar to the Down
block beginning with a 1 × 1 Convolution block with the
stride of 1, but this time the convolution in the typical 3 × 3
Convolution block is replaced by a transposed convolution (or
“deconvolution”) with a stride of 2 (which doubles the image
size). Then in the final step, a 1 × 1 convolution followed by
batch normalization reduces the channel depth from 32 filters
to 1 output filter, which is then added to the original network
input image to form the final network output.

B. 3D Focal Line Method

For a linear transducer array, the focal line is a line that
goes across the element focus and is perpendicular to the
x (axial)-z (elevation) plane of the element. Photoacoustic
waves emitted from a point on this line will reach the entire
surface of the transducer element simultaneously, which will
maximize the receiving sensitivity of the transducer. Therefore,
for an arbitrary point in 3D space, while the emitted wavefront
has multiple paths to reach the transducer element, only the
one that interacts with the focal line produces the maximum
received amplitude. Inspired by this feature, the 3DFL method
used this focal line as an auxiliary line for computing the
time of arrival. The reconstruction procedures can be split
into three steps. The first step is the 3D reconstruction for
a single element. In this step, 3DFL first creates a 3D position
matrix and then computes the distance (r) from each matrix
point to the transducer surface based on the shortest path that
travels across the focal line. Following that, 3DFL calculated
the traveling time by dividing the distance (r) by the speed
of sound and then back-projected the PA signal to the 3D
matrix according to the acquisition time. In the second step,
3DFL repeats the same process for the rest of the 127 elements
and sums the 3D matrix for each element. This finishes the
reconstruction of one raw data frame acquired at a specific
elevation position. In the third step, 3DFL repeats steps
one and two for other frames acquired at different elevation
positions and then sums all the 3D matrices to generate the
final 3D image. The detailed principle of the 3DFL could be
found in previous studies from our group [13], [35].

C. Simulation and Training

We proposed a simple method to generate training data
for elevational resolution improvement. The simulation images
were generated in 2D in the axial-elevational plane (“B-scan”
images) instead of 3D. This approach can quickly accumulate
a large number of simulated images as input for training.
FD U-net is used to learn the features and after training, the
network can improve the elevational resolution. This method
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Fig. 2. A schematic of the FD U-net used as the basis for our model. The input matrix size is 256 by 256. The number on the top of each column
is the feature maps in each layer. On the right, the yellow block shows the dense connectivity in detail. ReLU: Rectified Linear Unit. BN: Batch
normalization. Conv: convolution. The yellow-dashed block shows the dense block at different layers. f1 represents the initial channels of the layer.
The growth rate of each layer is four to learn a number of feature maps.

is termed as Deep-E. All the parameters for training a network
are shown in Table I.

To generate the input data for training, we use
the MATLAB-based photoacoustic simulation toolbox,
K-Wave [36]. To prepare the low elevational resolution
photoacoustic data in a linear-array-based PACT,
a conventional approach would generate 3D data as the
input. However, this process is cumbersome and time-
consuming, as it needs to prepare a large amount of 3D
ground truth images. As such, there is a need for more
efficient simulation methods. Considering that the resolution
in the lateral dimension is much higher than the elevational
dimension, we only generate 2D images in the axial-
elevational (AE) plane as training data. This approach is
much more convenient and efficient for the preparation of
the training dataset. Fig. 3 shows our simulation geometry.
An arc-shaped transducer detects the A-line signal along
the axial direction. The arc-shaped transducer is assumed to
move along the elevational direction to mimic the elevation
scanning with a step size of 0.1 mm. Then, the B-scan image
is formed in the axial-elevation plane by stacking all the
A-lines in sequence. This B-scan image is used as the input
data for training. This arc-shaped transducer shares the same
parameters as the experimental one, whose details can be
found in the next section. It has a length of 15 mm with an
acoustic focus at 40 mm axial depth.

The ground truth images are generated using the Insight
Segmentation and Registration Toolkit (ITK) [37]. This toolkit
can generate 3D vascular structures with multiple vascular
branches and different vascular diameters. Sectioning the 3D
structure will generate 2D images with similar features as the
cross-sectional human breast data. One of the 3D volumes is
displayed in Fig. 3. A video in Supplementary 1 (S1) shows
the formation of the 3D volume.

To mimic the imaging size of human breast data, we simu-
late the input data in the AE-plane at the size of 50 × 50 mm
with a pixel size of 0.1 mm. The object is placed 30 mm away
from the acoustic detector in the axial direction. To achieve
50 mm of elevational scanning distance, we moved a single

TABLE I
PARAMETERS FOR THE TRAINING NETWORK

element 500 steps with 0.1 mm step size along the elevational
direction. Eight 3D vessel datasets from ITK are generated for
simulation to acquire a large amount of training data. Each
3D vessel dataset is composed of 200 segmented 2D images.
It took 20 minutes to simulate 200 2D images in the 3D
volume. These datasets are subjected to 4 grades of signal-
to-noise ratio (SNR) at 12 dB, 9 dB, 6 dB, and noise-free,
respectively. The experimental breast data determine these
SNR levels. Supplementary 2 (S2) demonstrates the examples
of the training data. In total, 6400 (8 × 200 × 4) images
are used as the input. They are trained to achieve a Deep-
E framework for elevational resolution improvement. We did
not use other augmentation methods such as rotation, shifting,
or rescaling [38] as they cannot preserve the acoustic focal
position. As the spatial resolution varies at different distances
to the acoustic focus, we decided to maintain the acoustic
focal position for better training outcomes. Among all the
simulated data, 72% were used for training, 18% were used
for validation, and 10% were reserved for testing. The setup
included an AMD Ryzen 9 3950X CPU, 128 GB RAM, and
a NVIDIA GTX 2080Ti.
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Fig. 3. Workflow of the Deep-E training and validation.

Fig. 4. MSE for training and validation in each epoch.

For the hyperparameters, we used a mini-batch size of 8,
a bias initializer of zero, a learning rate of 0.001, and Adam
as the optimizer. For the batch normalization, the momentum
parameter was set to 0.99, and the epsilon was 0.001. The loss
function used in training was the mean squared loss of the
intensity between the last layer output and ground truth (2).
The networks were implemented using Python 3.7 in Keras
with a Tensorflow 2.0 backend in the cloud service of Google
Colaboratory [39]. The total training took a total of 1.7 hours
with 41,490 training iterations. Fig. 4 shows the training loss
variation in MSE for different epochs during training.

D. Experimental Design

The experimental imaging system setup used in this study
is presented in Fig. 1(b). A 128-element linear transducer
with 2.25 MHz central frequency (Imasonics, Inc.) and 65%
bandwidth is used for signal detection. Each element in the
array is arc-shaped with a 15 mm elevation length and 40 mm
axial focus. Our previous study quantified that the elevation
resolution was approximately 1 mm after reconstruction with
the 3DFL method [4]. The light source is a 10-Hz pulsed Nd:
YAG Continuum Surelite III-10 laser with 1064 nm output

wavelength and 10 ns pulse width. The laser output was
coupled to a circular input, line-output fiber bundle. The line
output and transducer were assembled using a 3D-printed
mount. To achieve coaxial light delivery and acoustic detec-
tion, a dichroic mirror (cold mirror, Edmund Optics Inc.) was
attached at a 45-degree angle to the transducer. The dichroic
mirror allows transmission of near-infrared light (∼97%) at
an incident 45-degree angle. The generated acoustic waves
were reflected by the mirror at 90 degrees and detected by the
transducer. For linear scanning, a translation stage (McMaster-
Carr) was utilized to move the transducer and fiber bundle
simultaneously at the speed of 1 mm/s. The synchronization
of the light delivery and ultrasound signal detection was
achieved with trigger output from the laser. We used the
Verasonics Vantage data acquisition (DAQ) system to receive
photoacoustic signals and reconstructed raw data with the
back-projection algorithm in MATLAB.

To test the performance of Deep-E, we did several exper-
iments for different purposes. First, two pencil lead exper-
iments were conducted to verify that Deep-E could effec-
tively improve the elevational resolution and recover the true
pencil lead diameter, even at different imaging depths. Then,
we implemented Deep-E on human imaging data to verify
whether it works well for in vivo data.

1) Pencil Lead Imaging: For the first pencil-lead experi-
ment, we aimed to verify whether Deep-E could improve
elevational resolution. As we described above, the object at
acoustic focus has the best elevational resolution. Therefore,
if an object increases its distance from the acoustic focus,
its elevational resolution will gradually degrade. For this
experiment, we prepared five pencil leads with a 0.5 mm
diameter, which is smaller than the experimentally quantified
elevational resolution [4]. These pencil leads were placed on
a 3D-printed mount at different depths. One of the pencil
leads was at the acoustic focus. The mounted pencil leads
were immersed in water mixed with a 2% Intralipid for light
scattering [40].

For the second pencil-lead experiment, we aimed to test
the accuracy of Deep-E for resolution enhancement. For this
purpose, we used pencil leads of various diameters: 0.5,
0.9, and 2 mm. We chose this diameter range based on the
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Fig. 5. Numerical data validation. (a): (left to right) input data (line
objects) at 6 dB SNR, 12 dB SNR, and noise-free. (b): (left to right) output
line data at 6 dB SNR, 12 dB SNR, and noise-free. (c): Ground truth of
line object data. Five lines are placed beneath the transducer starting
from 35 mm to 55 mm at 5 mm depth increments. From top to bottom,
the lengths are 0.5 mm, 1 mm, 2 mm, 3mm, and 4mm, respectively.
(d): Input data (point objects) at 6 dB SNR, 12 dB SNR, and noise-free.
(e): Output data (point objects) at 6 dB SNR, 12 dB SNR, and noise-free.
(f): Ground truth of point data. The diameter of each point is 0.5mm. Five
points are placed beneath the transducer starting from 35 mm to 55 mm,
at 5 mm depth increments.

breast vessel diameters in women [41]. The phantom is placed
beneath the transducer at acoustic focus.

2) Human Breast Imaging: The Deep-E framework is also
tested for human breast data. To acquire the experimental
breast data, the study protocol is approved by the institution
review board of the University at Buffalo. The breast imaging
system is called Dual scan mammoscope (DSM), whose details
were discussed in the papers [4], [42]. In brief, while standing
upright, the volunteer placed her breast on the plastic film of
the bottom water tank. The plastic film of the top water tank
moved down to compress the top skin surface of the breast
mildly. The combined transducer and fiber bundle mounts were
placed into the water tanks to scan the breast at a step size of
1 mm/s. The transducer was 40 mm away from the skin surface
because of a special design to achieve co-planar light delivery
and acoustic detection [43]. The breast size determined the
elevation scanning length (typically 5 cm). As for imaging
depth, the transducer could image 3-4 cm underneath the skin
surface. Therefore, we chose a 50 × 50 mm matrix size for
the simulation data, which ensures that the simulation range
fully covers the experimental condition.

III. RESULTS

This section presents the simulation, phantom, and human
imaging results. For better illustration, the 3D images are
presented using maximum amplitude projection (MAP) along
the axial direction. The MAP images are color encoded by

Fig. 6. Validation of Deep-E using 0.5 mm pencil leads placed at different
depths. (a1, b1, c1) are the MAP images reconstructed by 2D-stack,
3DFL, and Deep-E, respectively. (a2, b2, c2) are the cross-sectional
images reconstructed by 2D-stack, 3DFL, and Deep-E, respectively.
(d). Quantification of pencil lead diameter through FWHM. (e). Quan-
tification of 0.5-mm pencil leads SNR at different depths.

depth along the axial direction. The colors blue to red in
MATLAB’s jet colormap represent the imaging depth from
shallow to deep.

A. Validation With Numerical Simulation

We first examined the elevational resolution improvement
on the simulation data. Two types of simulation data were used
in the validation. As shown in Fig. 5, the first type consists of
line objects with different lengths placed at different depths.
The line length (0.5mm, 1 mm, 2 mm, 3 mm, and 4 mm) is
increased from top to bottom. Its input and output results are
presented in Figs. 5(a) and 5(b) under three SNR groups: 6 dB,
12 dB, and noise-free. The corresponding ground truth image
is shown in Fig. 5(c). After deep learning, we can see that the
Deep-E outputs show five clear line structures with a clean
background. In addition, the length of the input is similar to
the ground truth. The second type of testing dataset consists
of 0.5 mm-diameter point data at different depths. As the
imaging depth increases, the elevational resolution becomes
poorer, as shown in Fig. 5(d). As expected, the resolution is
improved in Fig. 5(e), and the point source is recovered to
its original size. Overall, the results show that Deep-E works
well with numerical data.

B. Validation With Experimental Pencil Lead Data

Deep-E was further validated through experimental studies.
The pencil lead widths recovered by different reconstruction
methods were quantified using a full-width at half maxi-
mum (FWHM) algorithm. The test objects were five pencil
leads of 0.5 mm diameter placed 40 mm to 60 mm away from
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Fig. 7. Validation of Deep-E on pencil leads with different diameters.
All pencil leads were placed at the acoustic focus. (a1, a2, a3): Cross-
sectional images reconstructed by 2D-stack, 3DFL, and Deep-E, respec-
tively. (b1, b2, b3): MAP images are reconstructed by 2D-stack, 3DFL,
and Deep-E, respectively. (c). Quantification of the reconstructed pencil
lead diameter through FWHM. (d). Quantification of the SNR of different
diameter pencil leads.

the transducer at 5 mm depth increments. The depth-encoded
MAP images are shown in the left column of Fig. 6. In the
2D reconstructed result of Fig. 6(a1), it can be seen that
the dark blue pencil lead has the sharpest edge because it
is placed at the acoustic focus. In contrast, the orange pencil
lead shows the blurriest edge because it is farthest from the
acoustic focus. In the second column, Figs. 6(a2), 6(b2),
and 6(c2) are the cross-sectional images in the AE-plane,
which can better demonstrate the effective resolution in the
three different reconstruction methods. 3DFL improves the
elevational resolution, as shown in Figs. 6(b1) and 6(b2).
However, the FWHM of the pencil leads is still higher than
the true diameter. In comparison, the Deep-E results shown in
Figs. 6(c1) and 6(c2) are much closer to the original diameter
of the pencil lead. The FWHM quantification and normalized
SNR are summarized in Figs. 6(d) and 6(e). Compared to 2D-
stack, Deep-E provided at least four times improvement in the
elevational resolution. Deep-E gave the best estimation of true
pencil lead diameter and the higher overall SNR among the
three reconstructed methods.

Next, we tested pencil leads with three different diameters
(0.5, 0.9, and 2mm). They were all placed at the acoustic focus,
where optimal the elevational resolution (Fig. 7). Again, the
Deep-E output in Fig. 7(a3) continues to recover the pencil
lead’s true diameter. Compared to 2D-stack and 3DFL, the
cross-sectional images in Fig. 7(a3) provided the best diameter
estimation. The FWHM quantification in Fig. 7(c) further
validated our assumption.

C. Validation With Human Breast Data

To validate Deep-E for in vivo applications, we applied
the network to human breast imaging results. Human breast
data from three different subjects are used. The MAP images
in Fig. 8 show the performance of the Deep-E network in
comparison to 2D-stack and 3DFL. Figs. 8(a), 8(c), and
8(e) are the conventional 2D reconstruction results. All these

Fig. 8. Validation in human breast data from three human different
subjects. From the left to right are three reconstruction methods: 2D-
stack, 3DFL, and Deep-E. (a), (c), (e): the reconstructed MAP breast
images from three volunteers, respectively. (b), (d), (f): the cross-
sectional images from three volunteers, respectively. The orange lines
in a, c, e mark the position for the cross-sectional image in b, d, f.

data are shown over a 30 mm reconstruction depth with the
starting depth at 40 mm away from the transducer. The large
starting depth is caused by our co-planar reflector design.
As expected, the 2D reconstruction results exhibited poorer
elevation resolution, especially for vessels far away from the
transducer focus. For example, in the first breast data, the
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red color vessel on the right edge (marked with white-dashed
block) in Fig. 8(a) is blurred into the background. 3DFL
recovers the vessels and shows a clean red vessel shape.
Compared to these two images, Deep-E gives shaper vascular
structures with a clean background. More importantly, Deep-
E can extract vascular structures in deep tissue, colored in
orange and red, which are hard to notice in 2D-stack and 3DFL
images, such as the orange vessel (marked with white-dashed
block) at the left corner of Fig. 8(a). For better illustration,
we also plotted the cross-sectional images taken across the
orange-marked line in the MAP images in Figs. 8(b), 8(d),
and 8(f). We specially marked the vessels in Fig. 8(e) with
solid blocks. From left to right are five main vessel points at
different depths, where they are colored in blue, green, light
green, blue and yellow, respectively. Their structures match
well with the vessel point on the orange line, as marked with
the rectangular block in Fig. 8(f). We can notice that 2D-
stack images have the poorest elevational resolution while
Deep-E can refine the breast vessels into sharper features.
Moreover, we notice that the Deep-E network removed the
stripe artifacts induced by the DAQ in Fig. 8(e), marked with
white arrows. The photoacoustic overlay on the ultrasound
images are present in supplementary 3 (S3).

IV. DISCUSSION

Our work applies deep learning techniques to linear-array-
based PACT. We propose a unique deep learning network,
Deep-E, which utilizes 2D training data to solve a 3D prob-
lem. The novelty of our simulation method is to generate
a 2D matrix in the axial-elevational plane using an arc-
shaped transducer element instead of generating a 3D matrix
using the linear transducer arrays. Deep-E has several advan-
tages: (1) The generation of 2D training data is much faster
than the conventional 3D simulation. Because we use 2D
images as training data, the simulation and training times
are orders of magnitudes shorter than 3D. (2) It provides a
high-speed reconstruction of 3D images. Table II provides
the computation time for 3D reconstruction in Deep-E and
3DFL. Processing the experimental data in the trained Deep-
E model took less than a second. The total computation time
for loading and arranging the experimental data, processing
in Deep-E, and remapping the Deep-E results in lateral-
elevation dimensions is less than 30 seconds in an automated
master code. In comparison, 3DFL reconstruction took 12
or 20 minutes (depending on the computation power). (3)
The simulation method is not limited by the number of
elements. For example, while we demonstrated the results in
a 128-element array, the trained network can also be used
in 64 or 256 element arrays. Because the experimental data
was processed element by element independently in the axial-
elevation plane, the number of elements in the array will not
affect the final result. (4) The method can also be utilized in
other transducer geometries. By adjusting how we combine
data from different elements, Deep-E can also be utilized
in circular or arc-shaped arrays to improve the elevation
resolution. Moreover, since photoacoustic imaging shares the
same detection and reconstruction principles with ultrasound,

TABLE II
COMPUTATION TIME FOR 3D DATA RECONSTRUCTION

the Deep-E method can also be applied in ultrasonography,
allowing for better 3D imaging of anatomical structures [44].
(5) Deep-E also removes noise and artifacts. Our training
data was crafted at multiple noise levels while the ground
truth images did not contain any noises or artifacts. When
the Deep-E model was trained, it removed artifacts and noises
that did not look like vascular structures. These advances allow
Deep-E to be utilized in a wide range of PACT systems and
applications.

After testing on simulated vascular data, our Deep-E model
can improve the elevational resolution in a wide range of
simulation and experimental results. Based on the quantifica-
tion of FWHM, it shows that Deep-E can improve elevational
resolution by at least four times. We first tested the Deep-E
using numerical simulation data. We used a variety of loss
metrics to compare its performance with input, as shown in
Fig. 5. Deep-E has the highest value in peak signal-to-noise
(PSNR) and structural similarity index (SSIM) [45], which
means that the output has very little noise, and the features
look very close to the ground truth. Next, we tested Deep-E on
experimental pencil leads data. While both 3DFL and Deep-E
can improve the elevational resolution. Deep-E is superior to
3DFL because the reconstructed pencil leads’ widths are closer
to the real size. This confirms that Deep-E does not simply
reduce vessel diameters but rather restore the vessel diameter
to its true size and refine the elevational resolution at different
imaging depths. We also tested the Deep-E in human breast
data. The result in Fig. 8 shows that Deep-E can recover
vascular structures much better than 2D-stack and 3DFL.
It not only refines the vessel resolution but also reveals deeper
vessels in the majority. This is because our training data has a
deep imaging depth of 50 mm at different noise levels, which
makes Deep-E effective in recovering deeper photoacoustic
signals. The stripe artifacts are also removed because Deep-E
can differentiate the real photoacoustic signal and background
noise. Moreover, although the network focuses on elevational
resolution, there also appears to be an improvement in axial
and lateral resolution. The axial resolution of pencil lead in
Figs. 6 and 7 appear less in Deep-E images compared to other
images. Similarly in Fig. 8, there is an improvement in the
resolution of blood vessels present in all directions. Because
our ground truth data was presented in the axial-elevation
plane, resolution along these two directions was improved.
The lateral resolution improvement was a secondary effect.
Because vessels are orientated in 3D, improvements in the

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on February 07,2024 at 15:47:39 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: DEEP-E: FULLY-DENSE NEURAL NETWORK FOR IMPROVING ELEVATION RESOLUTION 1287

other two directions make an apparent improvement in the
lateral direction.

Our results indicate that Deep-E can be successfully applied
to in vivo experimental data, even if the vascular structures are
dense and complicated. To the best of our knowledge, this is
the first study that uses deep learning to improve 3D human
breast data in PACT.

Although Deep-E has significant performance in enhancing
the in vivo images’ elevational resolution, some limitations
can be improved in future studies. First, some vessels cannot
be extracted efficiently in Deep-E. For example, the blue
vessel in the center of Fig. 8a is discontinuous. This issue is
mainly caused by the inconsistency of signal intensity along
the vessel. In terms of recovering deep vessels, while Deep-E
is superior to 2D reconstruction, it is not as good as 3DFL
in certain cases. For example, in Fig. 8e, the red vessels
marked with a white-dashed block are more apparent in 3DFL.
This is because 3DFL considers receiving angles along the
elevation direction. Deeper vessels can be seen at multiple
elevation detection positions and thus can be recovered better
in 3DFL. In future studies, we plan to use information from
adjacent frames to improve vessel continuity and deep vessel
recovery. Second, the quantitative information might be lost
after Deep-E processing. For instance, in Fig. 7, after Deep-E
processing, the intensity of the 0.5 mm pencil lead has been
improved while the intensity of the other two pencil leads did
not change. The quantitative accuracy could be improved with
specially designed training data at various signal intensities.
Lastly, the current Deep-E model focuses only on enhancing
the elevation resolution. It did not consider improvement in
lateral resolution nor other issues in linear array detection,
such as the limited-view problem [46]. With the help of high-
speed 3D simulation methods [47], a more comprehensive
model could be developed to address these issues.

V. CONCLUSION

This work aims to apply deep learning techniques to
enhance the elevational resolution with high speed in 3D
PACT. We propose a simple method to generate input data
that mimics the poor elevation resolution in a linear array. The
pencil lead--s data demonstrated that Deep-E could improve the
elevation resolution and restore the object’s true size instead
of just converting everything into point sources. Deep-E also
exhibited significant resolution improvement on the in vivo
human breast data. In addition, we were able to restore deeper
vascular structures and remove the noise artifact. Moreover,
Deep-E is not limited by the number of elements of the trans-
ducer or the transducer geometry, which means it can enhance
elevational resolution on various imaging systems if the data
are appropriately combined. We envision that Deep-E will
significantly impact linear-array-based photoacoustic imaging
studies by providing high-speed and high-resolution image
enhancement.
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